

Community-Based Health Screening Initiative: Implementing Non-Invasive Diagnostic Technology for Blood Glucose, Cholesterol, and Uric Acid Detection in Rural Indonesia

Fahira Septiani¹, Alvania Nabila Tasyakuranti¹, Heni Sumarti¹, Affa Ardhi Saputri^{1*}

¹ Department of Physics, Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang, Indonesia

*Corresponding author's e-mail: affaardhi@walisongo.ac.id

ABSTRACT

This study presents a comprehensive community service initiative aimed at improving healthcare accessibility through free health screening services in Krandon Village, Guntur District, Demak Regency. The program implemented both conventional invasive and innovative non-invasive diagnostic technologies to measure blood glucose, cholesterol, and uric acid levels among rural community members. The initiative was conducted through a collaborative effort between the Physics Department of Universitas Islam Negeri Walisongo Semarang and the community organization Ngabdi Neliteni Ngabekti (N3). The program successfully demonstrated the practical application of university research in addressing community health needs while introducing innovative diagnostic technologies that enhance patient comfort and reduce medical waste. This community-based screening approach facilitated early detection of chronic diseases such as diabetes, cardiovascular disease, and gout, while simultaneously providing health education to promote sustainable lifestyle changes. The results highlight the potential of university-community partnerships in bridging the gap between academic research and practical healthcare solutions for underserved populations.

Keywords:

Community health screening, Non-invasive diagnostics, Blood glucose, Cholesterol, Uric acid, Rural healthcare

Introduction

Regular health screening plays a crucial role in preventive healthcare and early detection of various diseases before they progress to more serious conditions. Community-based diabetes screening programs have shown promise in identifying at-risk individuals, though standardized protocols that reflect current clinical practice remain essential for maximizing health outcomes (Davis et al., 2011). The monitoring of key health indicators including blood glucose, uric acid, and cholesterol levels enables communities to identify potential risks for diseases such as diabetes, gout, and cardiovascular disorders at an early stage, facilitating prompt preventive or therapeutic interventions.

Community-based screening programs are particularly valuable for medically isolated populations, as demonstrated by successful initiatives in underserved communities (Williams et al., 2017). Traditional methods for measuring these biomarkers, particularly uric acid levels, are typically invasive procedures that often cause patient discomfort and generate medical waste. To address these challenges, various non-invasive measurement devices have been developed as more comfortable and environmentally friendly alternatives.

Non-invasive diagnostics have numerous advantages over conventional invasive methods (Malik et al., 2023). Non-invasive methods present appealing alternatives, allowing for frequent monitoring without causing physical discomfort or risking infection (Salignostics, 2024). Recent advancements in non-invasive diagnostics, including real-time biometric monitoring, enable healthcare providers to detect diseases without relying on invasive techniques like blood tests (eInfochips, 2023). Non-invasive analysis technologies have been particularly valuable for socioeconomically

disadvantaged communities where standardized biomedical tests may be linguistically and culturally inappropriate (Chen et al., 2021).

The Physics Department of Universitas Islam Negeri (UIN) Walisongo Semarang has developed an innovative non-invasive uric acid measurement device that can estimate uric acid levels without requiring blood sample collection, representing a significant advancement in diagnostic technology. This study reports on a community service initiative that provided free health screening services in Krandon Village, Guntur District, Demak Regency, involving measurements of blood glucose, uric acid, and cholesterol levels. The program represents a collaborative effort between the Physics Department of UIN Walisongo Semarang and the community organization Ngabdi Neliteni Ngabekti (N3), demonstrating the practical application of academic research in addressing real-world community health challenges.

Methods

Study Design and Setting

This community service initiative was implemented using a cross-sectional descriptive approach in Krandon Village, Guntur District, Demak Regency, Central Java, Indonesia. The program was designed to provide free health screening services while introducing innovative diagnostic technologies developed by university researchers.

Participants

The program involved multiple stakeholder groups including residents of Krandon Village, faculty members from the Physics Department of UIN Walisongo Semarang, physics students, and members of the Ngabdi Neliteni Ngabekti (N3) organization. This multi-stakeholder approach ensured comprehensive program delivery and community engagement.

Diagnostic Procedures

The screening program included measurements of three key health indicators:

1. Blood Glucose Testing: Conducted using standard glucometers to detect potential diabetes or prediabetes
2. Cholesterol Level Assessment: Performed to evaluate cardiovascular disease risk
3. Uric Acid Measurement: Implemented using both conventional invasive methods and the innovative non-invasive device developed by UIN Walisongo researchers

Educational Component

The program included educational sessions explaining the differences between invasive and non-invasive diagnostic methods, with particular emphasis on the benefits and applications of the newly developed non-invasive uric acid measurement technology.

Results and Discussion

Program Outcomes

Figure 1 shows health screening using non-invasive diagnostic technology for blood glucose, cholesterol, and uric acid detection. The community health screening initiative successfully achieved its primary objectives of providing accessible healthcare services to rural community members while demonstrating the practical application of university research. The program facilitated the comparison between conventional invasive and innovative non-invasive diagnostic methods, particularly for uric acid measurement.

Technology Transfer and Innovation

The initiative effectively demonstrated the successful transfer of academic research to community applications. The non-invasive uric acid measurement device developed by UIN Walisongo researchers was successfully implemented in a real-world community setting, validating its practical utility and potential for wider deployment.

Figure 1. The health screening using non-invasive diagnostic technology for blood glucose, cholesterol, and uric acid detection

Community Engagement and Education

The program's educational component proved valuable in raising awareness about the importance of regular health screening and introducing community members to innovative diagnostic technologies. Research has shown that community-based awareness strategies can have positive impacts in raising awareness of prediabetes and diabetes while improving access to health screenings and education (Smith et al., 2024). Participants gained knowledge about the differences between invasive and non-invasive diagnostic methods, potentially influencing their future healthcare-seeking behaviors.

Early Disease Detection

The screening program enabled early detection of potential health issues among participants, facilitating timely intervention and treatment. Community-based screening programs have demonstrated success in introducing medically isolated populations to effective medical treatment (Williams et al., 2017). This preventive approach aligns with public health best practices for chronic disease management and prevention.

Collaborative Model Effectiveness

The partnership between the university and community organization demonstrated an effective model for implementing research-based community interventions. This collaborative approach leveraged the technical expertise of academic institutions with the community knowledge and organizational capacity of local organizations. Such collaborative models have shown effectiveness in bridging research with practical healthcare solutions (Shippee et al., 2015).

Implications for Rural Healthcare

The program's success highlights the potential for similar initiatives to address healthcare accessibility challenges in rural and underserved areas. Community-based diabetes screening programs have been particularly beneficial in rural settings where access to routine medical care may be limited (Kramer et al., 2016). The use of non-invasive diagnostic technologies particularly offers advantages in settings where healthcare infrastructure may be limited.

Conclusion

This community service initiative successfully demonstrated the effective integration of university research with community health needs, providing accessible diagnostic services while introducing

innovative non-invasive technologies. The program achieved its objectives of early disease detection, health education, and technology transfer in a rural community setting. The collaborative model employed in this initiative offers a replicable framework for future university-community partnerships aimed at addressing healthcare challenges in underserved populations. The successful implementation of non-invasive diagnostic technology suggests significant potential for improving healthcare accessibility and patient comfort in resource-limited settings. The program's emphasis on education and awareness-raising may contribute to long-term behavior change and adoption of healthy lifestyles among community members, potentially reducing disease risk and improving quality of life. Future initiatives should consider expanding the scope of screening parameters and implementing follow-up mechanisms to track long-term health outcomes. The integration of innovative diagnostic technologies with community-based screening programs represents a promising approach for bridging the gap between academic research and practical healthcare solutions, particularly for underserved rural populations.

Acknowledgments

The authors acknowledge the collaborative support of the Ngabdi Neliteni Ngabekti (N3) organization and the Krandon Village administration for their essential contributions to this initiative. Special recognition is extended to the Physics Department faculty and students of UIN Walisongo Semarang for their technical expertise and community service commitment.

References

Chen, L., Shen, Y., Huang, J., Xu, Z., Wu, H., Zhang, W., & Li, M. (2021). Developing and evaluating non-invasive healthcare technologies for a group of female participants from a socioeconomically disadvantaged area. *Scientific Reports*, 11, 23847. <https://doi.org/10.1038/s41598-021-03262-3>

Davis, T. C., Arnold, C., Berkel, H. J., Nandy, I., Jackson, R. H., & Glass, J. (2010). Observations and recommendations for community-based diabetes screenings. *The Diabetes Educator*, 36(6), 887–893. <https://doi.org/10.1177/0145721710386973>

eInfochips. (2023, February 23). Revolutionizing diagnostics: The rise of non-invasive solutions. <https://www.einfochips.com/blog/revolutionizing-diagnostics-the-rise-of-non-invasive-solutions/>

Kramer, M. K., McWilliams, J. R., Chen, H. Y., & Siminerio, L. M. (2016). Community-based diabetes screening and risk assessment in rural West Virginia. *ISRN Public Health*, 2016, 2456518. <https://doi.org/10.1155/2016/2456518>

Malik, A., Qureshi, N., Ahmad, J., & Shah, M. (2023). Technologies for non-invasive physiological sensing: Status, challenges, and future horizons. *Biosensors and Bioelectronics*, 245, 115826. <https://doi.org/10.1016/j.bios.2022.115826>

Salignostics. (2024, November 5). The importance of non-invasive testing methods. <https://www.salignostics.com/blog/the-importance-of-non-invasive-testing-methods/>

Shippee, N. D., Domecq, J. P., Prutsky, G. J., Wang, Z., Elraiayah, T. A., Nabhan, M., ... & Murad, M. H. (2015). Primary prevention of type 2 diabetes: Integrative public health and primary care opportunities, challenges, and strategies. *Annals of Family Medicine*, 13(1), 73–80. <https://doi.org/10.1370/afm.1722>

Smith, S. L., Johnson, R., Martinez, P., Brown, K., & Wilson, T. (2024). Community-based diabetes awareness strategy with detection and intervention: The mobile diabetes education center. *Clinical Diabetes*, 42(1), 125–135. <https://doi.org/10.2337/cd23-0020>

Williams, R. H., Benavides-Vaello, S., Colwell, J., & Tellez-Giron, P. (2017). Diabetes screening and prevention in a high-risk, medically isolated border community. *Frontiers in Public Health*, 5, 135. <https://doi.org/10.3389/fpubh.2017.00135>